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Abstract—Unattended ground sensors (UGS) are widely used
to monitor human activities, such as pedestrian motion and
detection of intruders in a secure region. Efficacy of UGS systems
is often limited by high false alarm rates, possibly due to inade-
quacies of the underlying algorithms and limitations of onboard
computation. This paper presents a symbolic method of feature
extraction and sensor fusion, which is built upon the principles of
wavelet transform and probabilistic finite state automata (PFSA).
The relational dependencies among heterogeneous sensors are
modeled by cross-PFSA, from which low-dimensional feature
vectors are generated for pattern classification in real time. The
proposed method has been validated on data sets of seismic
and passive infrared (PIR) sensors for target detection and
classification. The proposed method has the advantages of fast
execution time and low memory requirements and is potentially
well-suited for real-time implementation with onboard UGS
systems.

Index Terms—Personnel detection, multimodal sensor fusion,
feature extraction, seismic sensor, PIR sensor

I. INTRODUCTION

Unattended ground sensors (UGS) are widely used in
industrial monitoring and military operations. Such UGS
are usually lightweight devices that automatically monitor
the local activities in-situ, and transfer target detection and
classification reports to some higher level processing center.
Commercially available UGS systems make use of multiple
sensing modalities (e.g., acoustic, seismic, passive infrared,
magnetic, electrostatic, and video). Efficacy of UGS systems
is often limited by high false alarm rates because the onboard
data processing algorithms may not be able to correctly
discriminate different types of targets (e.g., humans from
animals) [1]. Power consumption is a critical consideration in
UGS systems. Therefore, power-efficient sensing modalities,
low-power signal processing algorithms, and efficient meth-
ods for exchanging information between the UGS nodes are
needed [2].

In a personnel detection problem, the targets usually include
human, vehicles, and animals. Discriminating human footstep
signals from other targets and noise sources is a challenging
problem, because the signal to noise ratio (SNR) of footsteps
decreases rapidly with the distance between the sensor and
the pedestrian. Furthermore, the footstep signals may vary
significantly for different persons and environments.

Seismic sensors are widely used for personnel detection,
because they are relatively less sensitive to Doppler effects
environment variations as compared to acoustic sensors [3].

Current personnel detection methods using seismic signals can
be classified into three categories, namely, time domain meth-
ods [4], frequency domain methods [5], and time-frequency
domain methods [3], [6]. Recent research has relied on time-
frequency domain methods, such as wavelet transform-based
methods. Passive Infrared (PIR) sensors are widely used for
motion detection, and are well-suited for UGS systems due
to low power consumption. PIR sensors have been reported
for moving targets detection and localization [7]; however,
similar effort for target classification has not been reported
in open literature, although PIR sensor signals also contain
discriminative information in the time-frequency domain.

Collaborative target detection and classification using mul-
timodal sensor fusion would increase the overall performance
because the heterogeneous sensors can complement each other.
Sensor fusion can be implemented at different levels: data-
level fusion, feature-level fusion, and decision-level fusion.
Kalman filter is widely used for data-level fusion; Dempster-
Shafer evidence theory and Bayesian network are widely
used for decision-level fusion [8] [9]. Data-level fusion has
the least information loss, but it may be computationally
expensive and vulnerable to sensor degradation. Some of
these concerns can be alleviated by decision-level fusion, in
which detection/classification is performed at the data-level
and then the decisions are combined from individual sensors.
In principle, decision-level fusion is suboptimal since if a
target is not detected by all sensors, it will not experience
the full benefits of fusion [10].

This paper introduces a feature-level fusion method to
address these issues. Symbolic Dynamic Filtering (SDF) is a
data-driven feature extraction tool built upon the concepts of
Symbolic Dynamics and Probabilistic Finite State Automata
(PFSA) [11] [12]. In SDF, the sensor data are first partitioned
into symbol sequences, and then PFSA are constructed as
the representation of the underlying dynamics in the data.
A feature-level fusion approach built under the framework
of SDF has been proposed in [13] for fault diagnosis in
aircraft engine. The time series data from different sensors
are partitioned into symbol sequences from which the cross-
PFSA, called cross D-Markov machine [13] (denoted as ‘xD-
Markov machine’ in the sequel), is constructed. However, the
performance of this method may degrade significantly if the
SNR decreases. For analysis of noisy sensor data, this paper
extends the concept of xD-Markov machines by introducing
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Figure 1. An illustration of the test scenario with three sensor sites

wavelet surface partitioning [14] as an alternative to time
series partitioning in the original concept in [13]. In the
proposed method, images of wavelet-transformed time series
are partitioned for conversion into symbol sequences. Subse-
quently, xD-Markov machines are constructed from symbol
sequences of heterogeneous sensors to compress the pertinent
information into low-dimensional statistical patterns. The pro-
posed feature extraction algorithm mitigates the detrimental
effects of spurious noise by using wavelet analysis, captures
the essential signatures from the time-frequency domain of
the signals, and generates low-dimensional feature vectors for
pattern classification.

The proposed method is validated on the data collected from
seismic sensors and PIR sensors for the purpose of personnel
detection in border area. Performance of information fusion
from seismic and PIR sensors is compared with the results
obtained from single-modal sensors.

II. PROBLEM DESCRIPTION AND FORMULATION

The problem at hand is to detect and classify different
targets (e.g., humans and animals), where seismic and PIR
sensors are used to capture the respective characteristic signa-
tures. For example, in the movement of a human or an animal
across the ground, oscillatory motions of the body appendages
provide the respective characteristic signatures.

The seismic and PIR sensor data, used in this analysis,
were collected on multiple days from test fields on a wash
(i.e., the dry bed of an intermittent creek) and at a choke
point (i.e., a place where the targets are forced to go due
to terrain difficulties). During multiple field tests, sensor data
were collected for several scenarios that consisted of targets
walking along an approximately 150 meters long trail, and
returning along the same trail to the starting point. Figure 1
illustrates a typical data collection scenario.

The targets consisted of people (e.g., male and female
humans) and animals (e.g., donkeys, mules, and horses).
The humans walked alone and in groups with and without
backpacks; the animals were led by their human handlers
and they made runs with and without payloads. There were
three sensor sites, each equipped with acoustic and seismic
sensors. The seismic sensors were buried approximately 15 cm
deep underneath the soil surface, and the PIR sensors were
collocated with the respective seismic sensors. All targets
passed by the sensor sites at a distance of approximately
5 m. Signals from both sensors were acquired at a sampling
frequency of 10 kHz.

Sensor
Signals

Feature
ExtractionSignals Extraction

Target
Present

Target
AbsentDetection

AnimalHumanClassification

Figure 2. Tree structure formulation of the detection & classification problem

The tree structure in Fig. 2 shows how the detection and
classification problem is formulated. In the detection stage,
the pattern classifier detects the presence of a moving target
against the null hypothesis of no target present; in the classi-
fication stage, the pattern classifier discriminates among dif-
ferent targets. While the detection system should be robust to
satisfy the specifications of false alarm rates, the classification
system must be sufficiently sensitive to discriminate between
different classes of targets with high fidelity. In this context,
feature extraction plays an important role in target detection
and classification, because the performance of the classifier
largely depends on the quality of the extracted features.

III. SEMANTIC FRAMEWORK OF SENSOR FUSION

A (three-layered) hierarchical semantic framework is pre-
sented in this paper for the purpose of multi-sensor data in-
terpretation and fusion. In this framework, patterns discovered
from individual sensors are called atomic patterns (AP), while
patterns discovered from the relational dependency between
two sensors are called relational patterns (RP) [13].

Let L = {L1,L2, . . . ,LN} be the universal set of atomic
patterns. The atomic pattern library L is set of modal footprints
identified from individual sensing modalities for targets of
different classes. Given the atomic pattern library, a popular
framework for addressing information fusion is what is called
the set-theoretic approach. In this framework, higher level
patterns or contexts are modeled as subsets of L. Thus a
composite pattern, resulting from fusion of atomic patterns,
is a collection of atomic patterns from L and the resulting
library of composite patterns is a subset of the power set of the
atomic pattern library, i.e., L∗ ⊆ 2L. However, a disadvantage
of this approach is that it considers only modal footprints for
constructing composite patterns as a bag of atomic patterns;
relational dependencies between patterns are disregarded.

Since the relational dependencies cannot be ignored in
many practical problems, a hierarchical semantic framework
for multi-sensor data interpretation and fusion is proposed in
this paper, which involves a common approach to information
fusion at different layers of the hierarchy and to include
relational dependencies for composite pattern representation.
Thus, the middle layer deals with the relational dependencies
among atomic patterns, where relationships are modeled as
the cross-dependencies among sensor data streams from dif-
ferent sensors. These cross-dependencies are discovered via
relational PFSA that essentially capture the dynamics of state
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Figure 3. Comparison of the set-theoretic fusion (left) and the proposed semantic fusion of multimodal sensors (right)

transition in one symbol sequence (e.g., obtained from one
sensor) corresponding to a symbol appearance in the second
symbol sequence (e.g., obtained from another sensor). Loose
time-synchronization between sensor observations should be
adequate for this purpose. Symbol-level cross-dependencies
among modalities are exploited to mitigate information loss.

Finally, the top layer consists of higher level composite
patterns that is represented as digraphs where the atomic
patterns (AP) are modeled as nodes and dependencies between
nodes are modeled as relational patterns (RP). An illustrative
example in Fig. 3 compares the set-theoretic fusion (left)
with the proposed co-dependence aware fusion (right). The
definition of the composite pattern is as follows.

Definition 3.1 (Composite pattern representation): Let
L = {L1,L2, . . . ,LN} be the atomic pattern library and let
L∗ ⊆ 2L be the set of allowable primitives for a class. Then,
a composite pattern library Gr = {Gr

1 ,Gr
2 , . . . ,Gr

M} where
the ith composite pattern Gr

i is a digraph Gr
i = (LVi , EVi);

LVi ⊆ L with the index set Vi ⊆ {1, 2, . . . , N} and
Ei = {Rjk, ...} is a set of relational PFSAs.

The relational PFSAs are discovered by cross D-Markov
machine [13] construction to determine the respective cross-
dependence; the algorithm is described in Section III-C. Ab-
sence of a directed edge in composite pattern digraph would
be represented by a single state machine for relational PFSA,
which implies the lack of prediction capability of a target state
by the parent state.

A. Sensor Signal Conditioning and Transformation

This section presents the procedure for generation of
wavelet coefficient, i.e., an image in the scale-shift domain,

denoted as ‘wavelet image’ in the sequel, from observed sensor
time series for construction of symbolic representations of the
underlying dynamics. In this SDF-based procedure, a crucial
step is partitioning of the phase space for symbol sequence
generation. Various partitioning techniques have been reported
in literature, and a brief review is given in [14].

In wavelet-based partitioning, time series are first trans-
formed to wavelet domain, where wavelet coefficients are
generated at different time shifts and scales. The choice of
the wavelet basis function and wavelet scales depends on the
time-frequency characteristics of individual signals.

For every wavelet, there exists a certain frequency called
the center frequency Fc that has the maximum modulus in the
Fourier transform of the wavelet. The pseudo-frequency fp of
the wavelet at a particular scale α is given by the following
formula:

fp =
Fc

α Δt
, (1)

where Δt is the sampling interval. Then the scales can be
calculated as follows:

αi =
Fc

f i
p Δt

(2)

where i = 1, 2, ..., and f i
p are the frequencies that can be

obtained by choosing the locally dominant frequencies in the
Fourier transform.

Figure 4 shows an illustrative example of transformation of
the time series in Fig. 4(a) to the two-dimensional wavelet im-
age in Fig. 4(b); the amplitudes of the wavelet coefficients over
the scale-shift domain are plotted as a surface. Subsequently,
symbolization of this wavelet surface leads to the formation
of a symbolic image as shown in Fig. 4(c).
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Figure 4. Symbol image generation via wavelet transform of the sensor time series data and partition of the wavelet surface in ordinate direction

B. Symbolization of Wavelet Surface Profiles

This section presents partitioning of the wavelet surface
profile, as shown in Fig. 4(b), which is generated by the
coefficients over the two-dimensional scale-shift domain, for
construction of the symbolic image in Fig. 4(c). The x − y
coordinates of the wavelet surface profiles denote the shifts
and the scales respectively, and the z-coordinate denotes the
pixel values of wavelet coefficients (i.e., the surface height).

Definition 3.2: (Wavelet Surface Profile) Let H � {(i, j) :
i, j ∈ N, 1 ≤ i ≤ m, 1 ≤ j ≤ n} be the set of coordinates
consisting of (m × n) pixels denoting the scale-shift data
points. Let R denote the interval that spans the range of
wavelet coefficient amplitudes. Then, a wavelet surface profile
is defined as

S : H → R (3)

Definition 3.3: (Symbolization) Given the symbol alphabet
Σ, let the partitioning of the interval R be defined by a map
P : R → Σ. Then, the symbolization of a wavelet surface
profile is defined by a map SΣ ≡ P ◦ S such that

SΣ : H → Σ (4)

that labels each pixel of the image to a symbol in Σ.

The wavelet surface profiles are partitioned such that the
ordinates between the maximum and minimum of the coeffi-
cients along the z-axis are divided into regions by different
planes parallel to the x−y plane. For example, if the alphabet
is chosen as Σ = {a, b, c, d}, i.e., |Σ| = 4, then three
partitioning planes divide the ordinate (i.e., z-axis) of the
surface profile into four mutually exclusive and exhaustive
regions, as shown in Figure 4 (b). These disjoint regions form
a partition, where each region is labeled with one symbol
from the alphabet Σ. If the intensity of a pixel is located in a
particular region, then it is coded with the symbol associated
with that region. As such, a symbol from the alphabet Σ is
assigned to each pixel corresponding to the region where its
intensity falls. Thus, the two-dimensional array of symbols,
called symbol image, is generated from the wavelet surface
profile, as shown in Figure 4 (c).

The surface profiles are partitioned by using either the max-
imum entropy partitioning (MEP) or the uniform partitioning
(UP) methods [14]. If the partitioning planes are separated by

equal-sized intervals, then the partition is called the uniform
partitioning (UP). Intuitively, it is more reasonable if the
information-rich regions of a data set are partitioned finer
and those with sparse information are partitioned coarser. To
achieve this objective, the MEP method has been adopted such
that the entropy of the generated symbols is maximized. In
general, the choice of alphabet size depends on specific data
set. The partitioning of wavelet surface profiles to generate
symbolic representations enables robust feature extraction,
and symbolization also significantly reduces the memory
requirements. For the purpose of pattern classification, the
reference data set is partitioned with alphabet size |Σ| and is
subsequently kept constant. In other words, the structure of the
partition is fixed at the reference condition and this partition
serves as the reference frame for subsequent data analysis [11].

C. Construction of PFSA for Feature Extraction

This section presents construction of a probabilistic finite
state automaton (PFSA) for feature extraction based on the
symbol image generated from a wavelet surface profile.

For analysis of (one-dimensional) time series, a PFSA is
constructed such that its states represent different combinations
of blocks of symbols on the symbol sequence. The edges
connecting these states represent the transition probabilities
between these blocks [11]. Therefore, for analysis of (one di-
mensional) time series, the ‘states’ denote all possible symbol
blocks (i.e., words) within a window of certain length. Let us
now extend the notion of ‘states’ on a two-dimensional domain
for analysis of wavelet surface profiles.

The concept of D-Markov machine has been introduced by
the authors in their previous publications under the framework
of Symbol Dynamic Filtering (SDF) [11], [14] to extract in-
formation from symbol sequences/images which are generated
from single sensors. In this paper, a generalization of the
D-Markov machine is proposed, called xD-Markov machine,
which captures the symbol level cross-dependence. The D-
Markov machine is a special case of the xD-Markov machine
in the following sense: when both symbol sequences are
the same, the relational patterns are essentially the atomic
patterns corresponding to the symbol sequence; i.e., xD-
Markov machine reduces to a simple D-Markov machine. The
feature vectors extracted from xD-Markov machine with two
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same symbol sequences (i.e., from D-Markov machine) are
called Atomic Pattern (AP), and those extracted from xD-
Markov machine with two different symbol sequences are
called Relational Pattern (RP). The digraph representation of
AP and RP is illustrated in Fig. 5.

The xD-Markov machines are constructed based on two
symbol sequences {s1} and {s2} obtained from two different
sensors (possibly heterogeneous) to capture the symbol level
cross-dependence. Conversion of the two-dimensional symbol
image to one-dimensional symbol sequence while retaining
the pertinent information is a difficult problem. One simple
way for the conversion is to stack each row in the symbol
image one after another. However, this method only works
if the two symbol sequences {s1} and {s2} have the same
number of scales in wavelet transform; otherwise their length
of the generated symbol sequences will not be equal. More
importantly, this method may suffer information loss in the
frequency domain by only looking for relational dependency
at the similar frequency bands in {s1} and {s2}. It is highly
possible that the low frequency component in H1 has stronger
correlation with the high frequency component in H2.

To avoid these issues, a new method for converting symbol
images from two sensors to symbol sequences for discovery
of relational dependency is proposed. The key idea is to
exhaustively find all possible combination of rows between
the two symbol images. A formal definition is as follows:

Definition 3.4 (Conversion): Let H1 and H2 be the wavelet
coefficients (images) of sensor 1 and sensor 2, consisting of
m1 ×n and m2 ×n pixels, respectively. Let Wj

i ⊆ Hi be the
window that covers the jth scale in Hi. Then the two symbol
sequences {s1} and {s2} are defined as

{s1} = [SΣ(W1
1 ) . . .SΣ(W1

1 )
︸ ︷︷ ︸

m2

, · · · , SΣ(Wm1
1 ) . . .SΣ(Wm1

1 )
︸ ︷︷ ︸

m2

]

{s2} = [SΣ(W1
2 ) . . .SΣ(Wm2

2 ), · · · , SΣ(W1
2 ) . . .SΣ(Wm2

2 )
︸ ︷︷ ︸

m1

]

By implementing the conversion procedure as defined
above, the wavelet images H1 of (m1 × n) pixels and H2 of
(m2 ×n) are converted to one-dimensional symbol sequences
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Figure 6. An illustration of converting symbol images to symbol sequences

of the same length (m1 ×m2 ×n). An illustration is given in
Fig. 6, where m1 = 1, m2 = 2, n = 5 and |Σ1| = |Σ2| = 4.
A formal definition of the xD-Markov machine is as follows:

Definition 3.5 (xD-Markov): Let M1 and M2 be the PF-
SAs corresponding to symbol sequences {s1} and {s2} re-
spectively. Then a xD-Markov machine is defined as a 4-tuple
M1→2 � (Q1, Σ2, δ12, Π̃12) such that:

• Σ2 = {σ0, ..., σ|Σ2|−1} is the alphabet set of symbol
sequence {s2}

• Q1 = {q1, q2, . . . , q|Σ|D1
1

} is the state set corresponding
to symbol sequence {s1}, where D1 is the depth for {s1}

• δ12 : Q1 × Σ2 → Q1 is the state transition mapping that
maps the transition in symbol sequence {s1} from one
state to another upon arrival of a symbol in {s2}

• Π̃12 is the symbol generation matrix of size |Q1| × |Σ2|;
the ij element of Π̃12 denotes the probability of finding
jth symbol in {s2} while making a transition from ith

state in the symbol sequence {s1}
In practice, Π̃12 is reshaped into a vector p12 of length

|Q1| × |Σ2| and is treated as the extracted feature vector that
is a representation of the relational dependence between {s1}
and {s2}. This feature vector is called a Relational Pattern
(RP). The xD-Markov machine M2→1 and the corresponding
feature vector p21 are defined similarly. Fig. 5 schematically
describes the basic concept of the xD-Markov machine. Note,
a RP between two symbol sequences is not symmetric; there-
fore, RPs need to be identified for both directions. If {s1}
and {s2} are the same, then the xD-Markov machines M1→1

and M2→2 reduce to the simple D-Markov machine, and the
feature vector obtained from Π̃11 or Π̃22 is called an Atomic
Pattern (AP).

The set-theoretic approach falls at one end of the spectrum
of information fusion; here all relationships are excluded
and any fusion is solely done in the decision-theoretic sense
where the presence (or absence) of one or more footprints
can be used to estimate the probability of the fault class
under consideration. The other end of the spectrum is to
fuse data at the lowest level and construct machines (PFSAs)
working in the product space of all sensors. This approach
would be able extract modal dependencies before they are lost
when constructing separate machines for individual sensor or
modalities. But working in the product space has the danger of
state space explosion especially when the sensors and sensing
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modalities can be numerous [13]. The proposed approach
is a trade-off between the two ends of the spectrum and
attempts to include relational dependencies between sensing
modalities, while keeping it tractable for practical application.
A hierarchical approach ensures that composite patterns are
identified only when its constituting units at the lower level
have been observed. In the current framework we have con-
sidered relations taken only two at a time, but we propose to
explore relations between higher order cliques as future work.

D. Feature Selection and Pattern Classification

Once the feature vectors are extracted from the observed
sensor time series, the next step is to classify these patterns
into different categories based on the particular application.
However, the feature vector pij obtained from Π̃ij has the
dimension of |Qi| × |Σj | which is still high if |Qi| and
|Σj | are large. More importantly, many features in pij may
be zero since some transitions never occur. Therefore, it is
necessary to perform feature selection in order to find the
most representative and discriminative features and speed up
the pattern classification process. Many standard methods can
be found in feature selection literature [15]; a simple method
that selects the features with large inter-class separation and
small intra-class variance is adopted in this paper. Advanced
methods such as forward/backward selection [15] and mRMR
feature selection [16] may further improve the classification
result by selecting the most representative and discriminative
features; however, it is a topic of future research and not the
focus of this paper.

Pattern classification for personnel detection is posed as a
two-stage problem, i.e., the training stage and the testing stage.
The sensor time series data sets are divided into three groups:
i) partition data, ii) training data, and iii) testing data. The
partition data set is used to generate partition planes that are
used in the training and the testing stages. The training data
set is used to generate the training patterns of different classes
for the pattern classifier. Multiple sets of training data are
obtained from independent experiments for each class in order
to provide a good statistical spread of patterns. Subsequently,
the class labels of the testing patterns are generated from
testing data in the testing stage. The partition data sets may
be part of the training data sets, whereas the training data sets
and the testing data sets must be mutually exclusive.

The partition data is wavelet-transformed with appropriate
scales to convert the one-dimensional numeric time series data
into the wavelet image. The corresponding wavelet surface
is analyzed using the maximum entropy principle [14] to
generate the partition planes that remain invariant for both the
training and the testing stage. The scales used in the wavelet
transform of the partitioning data also remain invariant during
the wavelet transform of the training and the testing data.
In the training stage, the wavelet surfaces are generated by
transformation of the training data sets corresponding to differ-
ent classes. These surfaces are symbolized using the partition
planes to generate the symbol images. Subsequently, PFSAs
(either D-Markov or xD-Markov machines) are constructed

based on the corresponding symbol images, and the training
patterns are extracted from these PFSAs. Similar to the training
stage, the PFSA and the associated pattern is generated for
different data sets in the testing stage.

Finally a classifier is trained using features of different
classes extracted from training data and can be used to classify
the features from test data set. There are plenty of choices
available for design of both parametric and non-parametric
classifiers in literature [17]. Among the parametric type of
classifiers, one of the most common techniques is to consider
up to two orders of statistics in the feature space. In other
words, the mean feature is calculated for every class along
with the variance of the feature space distribution in the
training set. Then, a test feature vector is classified by using
the Mahalanobis distance or the Bhattacharya distance of
the test vector from the mean feature vector of each class.
However, these methods lack in efficiency if the feature space
distribution cannot be described by second order statistics
(i.e., non-Gaussian in nature). In the present context, Gaussian
feature space distribution cannot be ensured due to the non-
linear nature of the partitioning feature extraction technique.
Therefore, a non-parametric classifier, such as the k-Nearest
Neighbors (k-NN) classifier may a better candidate for this
study [17]; however, in general, any other suitable classifier,
such as the Support Vector Machines (SVM) or the Gaussian
Mixture Models (GMM) may also be used.

IV. RESULTS OF FIELD DATA ANALYSIS

Field data were collected in the scenario illustrated in Fig. 1.
Multiple data runs were made to collect data sets of all three
classes, i.e., no target, human, and animal. The data were
collected over three days at different sites. A brief summary
is given in Table I showing the number of runs of each class.

Each data set, sampled at a sampling frequency of Fs = 10
kHz, has 1×105 data points that correspond to 10 seconds of
the experimentation time. In order to test the capability of the
proposed algorithm in target detection, another group of data
were collected with no target present. The problem of target
detection is then formulated as a binary pattern classification,
where the no target present data are considered as one class,
and the others with target present (i.e., human or animal) are
considered to belong to the other class. The data sets, collected
by the channel of seismic sensors that are orthogonal to the
ground surface and the PIR sensors that are collocated with the
seismic sensors, are used for target detection and classification.
For computational efficiency, the original seismic and PIR data
were downsampled by a factor of 10.

Table I
THE NUMBER OF FEATURE VECTORS FOR EACH TARGET CLASS IN THE

DATA SETS USED FOR THREE-WAY CROSS VALIDATION (SET 3)

Day 1 Day 2 Day 3 Total

No target 50 28 32 110

Human 30 22 14 66

Animal 20 6 18 44
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Figure 7. Flow chart of the problem of target detection and classification

Figure 7 depicts the flow chart of the proposed detection
and classification algorithm that is constructed based on the
theories of symbolic dynamic filtering (SDF) and k-nearest
neighbors (k-NN) classifier [17]. The proposed algorithm
consists of four steps, namely, signal preprocessing, feature
extraction, detection, and classification, as shown in Fig. 7.

In the signal preprocessing step, the DC component of the
seismic signal is eliminated, and the signal is normalized to
unit variance. The amplitude of seismic signal of a horse with
heavy payload passing by far away may be similar to that
of a pedestrian passing by at close distance due to the fact
that the SNR decreases rapidly with the distance between
the sensor and the target. The normalization of all signals
to unit variance makes the pattern classifier independent of
the signal amplitude and any discrimination should be solely
texture-dependent. For PIR signals, only the DC component is
removed and the normalization is not performed because the
range of PIR signals do not change.

In the feature extraction step, SDF captures the signatures of
the preprocessed sensor time-series for representation as low-
dimensional feature vectors. Based on the spectral analysis
of the ensemble of seismic data at hand, a series of pseudo-
frequency from the 1-20 Hz bands have been chosen to
generate the scales for wavelet transform, because these bands
contain a very large part of the footstep energy [6]. Similarly,
a series of pseudo-frequency from the 0.2-2 Hz bands have
been chosen for PIR signals to generate the scales. Upon
generation of the scales, continuous wavelet transforms (CWT)
are performed with appropriate wavelet basis function on the
seismic and PIR signals. db7 is used for seismic signals since it
matches the impulsive shape of seismic signals very well, db1
is used for the PIR case since PIR signals are close to square

waves. A maximum-entropy wavelet surface partitioning is
then performed. Selection of the alphabet size |Σ| depends
on the characteristics of the signal: a small alphabet size is
robust against noise and environmental variation, while a large
alphabet size has more discriminant power for identifying
different objects. The same alphabet is used for both target
detection and classification and the issues of alphabet size
optimization and data set partitioning are not addressed in this
paper. The execution of the code takes less than 1 second
for SDF to process a data set of 1 × 104 points with the
following choice of parameters: alphabet size |Σ1| = |Σ2| = 8,
number of scales |α1| = |α2| = 4, for seismic and PIR sensor
signals, respectively. M1→2 and M2→2 are used to form the
composite pattern.

The next step is to perform pattern classification on the
feature vectors. Two classifiers are needed as in the flow chart
of Fig. 7: one for target detection to decide whether a target
is present or not, and the other to identify the target. All
classifiers are implemented by k-NN classifier. The available
feature vectors are divided into two sets: a training set and a
testing set. In the numerical results presented in the following
sections, a three-way cross-validation [17] is used. The data
is divided into three sets by date (Day 1, Day 2, Day 3) and
three different sets of experiments are performed:

1) Training: Day 1 + Day 2; Testing: Day 3
2) Training: Day 1 + Day 3; Testing: Day 2
3) Training: Day 2 + Day 3; Testing: Day 1

Training and testing on feature vectors from different days
is very meaningful in practice. In each run of cross-validation,
no prior information is assumed for the testing site or testing

Table II
CONFUSION MATRICES OF THE THREE-WAY CROSS-VALIDATION

RESULTS USING SEISMIC, PIR AND FUSION OF THE TWO SENSORS

Seismic Sensor No target Human Animal

No target 76 5 29

Human 16 29 21

Animal 6 13 25

PIR Sensor No target Human Animal

No target 110 0 0

Human 3 51 12

Animal 0 9 35

Sensor Fusion No target Human Animal

No target 110 0 0

Human 1 52 13

Animal 0 1 43

Table III
COMPARISON OF THE DETECTION AND CLASSIFICATION ACCURACY BY

USING SEISMIC, PIR AND FUSION OF THE TWO SENSORS

Seismic PIR Fusion

Detection 74.5% 98.6% 99.5%

Classification 61.4% 80.4% 87.2%
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data. The classifiers’ capability to generalize to an independent
data set is thoroughly tested in the three-way cross-validation.

Following Fig. 7, the following cases are tested:
1) Detection of target presence against target absence;
2) Classification of target type, i.e., Human vs. Animal.
Table II shows the confusion matrices of the three-way

cross-validation using seismic sensor, PIR sensor and fusion of
the two sensors. The shaded area in Table II represents the con-
fusion matrices of target classification. Table III summaries the
detection and classification accuracy in Table II. It is observed
that the seismic sensor does not perform well for training and
testing in different test sites. This is because seismic sensor
is not site independent; variation in ground impedance and
texture may affect the performance in target detection and
classification. PIR sensors are almost site independent and
achieve much higher accuracy than seismic sensors in both
detection and classification. By using the composite pattern
generated by fusing the signals from seismic and PIR sensors,
the detection and classification results are further improved.

V. SUMMARY, CONCLUSIONS AND FUTURE WORK

This paper presents a feature-level fusion method for per-
sonnel detection using multimodal sensors. These features are
extracted as statistical patterns by constructing xD-Markov
machines from time series data collected from multimodal
sensors. An appropriate selection of the basis function and
the scale range allows the wavelet-transformed signal to be
de-noised relative to the original noise-contaminated signal
before partitioning of the resulting wavelet image for symbol
generation. The xD-Markov machine identifies the cross-
dependencies among different sensors and mitigates loss of
significant information as compared to set-theoretic informa-
tion fusion method. A distinct advantage of the proposed
method is that the low-dimensional feature vectors, extracted
from the xD-Markov machine, can be computed in situ and
communicated in real time over a limited-bandwidth wireless
sensor network with limited-memory nodes.

The proposed method has been validated on a set of field
data collected from different locations on different days. A
comparative evaluation is performed on the feature vectors
extracted from single seismic and single PIR sensors as well
as the composite pattern generated by fusion of the seismic
and PIR sensors using xD-Markov machine. Results show that,
while PIR sensors alone perform better than seismic sensors
alone, the co-dependence-aware fusion further improves the
detection and classification performance.

While there are many research issues that need to be
resolved before exploring commercial applications of the pro-
posed method, the following topics are under active research:

• Exploration of alternative ways for construction of rela-
tional PFSAs from wavelet images with mutiple scales;

• Improvement of the feature selection procedure by adopt-
ing more advanced methods [15], [16];

• Development of algorithms to extract relational depen-
dencies among three or more symbol sequences;

• Comparative evaluation of the proposed sensor fusion
method with Dempster-Shafer and Bayesian network ap-
proaches [17] at the decision fusion level.
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